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Microsatellite length mutations are often modeled using the generalized stepwise mutation process, which is a type of
random walk. If this model is sufficiently accurate, one can estimate the coalescence time between alleles of a locus after
a mathematical transformation of the allele lengths. When large-scale microsatellite genotyping first became possible,
there was substantial interest in using this approach to make inferences about time and demography, but that interest has
waned because it has not been possible to empirically validate the clock by comparing it with data in which the mutation
process is well understood. We analyzed data from 783 microsatellite loci in human populations and 292 loci in
chimpanzee populations, and compared them with up to one gigabase of aligned sequence data, where the molecular
clock based upon nucleotide substitutions is believed to be reliable. We empirically demonstrate a remarkable linearity
(r2 . 0.95) between the microsatellite average square distance statistic and sequence divergence. We demonstrate that
microsatellites are accurate molecular clocks for coalescent times of at least 2 million years (My). We apply this insight
to confirm that the African populations San, Biaka Pygmy, and Mbuti Pygmy have the deepest coalescent times among
populations in the Human Genome Diversity Project. Furthermore, we show that microsatellites support unbiased
estimates of population differentiation (FST) that are less subject to ascertainment bias than single nucleotide
polymorphism (SNP) FST. These results raise the prospect of using microsatellite data sets to determine parameters of
population history. When genotyped along with SNPs, microsatellite data can also be used to correct for SNP
ascertainment bias.

Introduction

To be useful as a molecular clock, a polymorphic ge-
netic locus needs to accumulate mutations in a predictable
way, so that with an appropriate statistical transformation,
the differences between two alleles present in the population
can be used to obtain an unbiased estimate of the time that
has elapsed since their last common genetic ancestor
(Zuckerkandl and Pauling 1962). When loci dispersed
throughout the genome are combined, this molecular clock
can in principle provide accurate estimates of genetic diver-
gence times and, with further analysis, can also estimate an-
cestral population sizes and population migration histories.

Microsatellites (or short tandem repeats) are simple re-
petitive sections of DNA of typically 2–5-bp motifs (e.g.,
CACACACACA). They possess several features suitable
for a molecular clock. First, microsatellites are widely dis-
persed throughout the genome. In humans, an estimated
150,000 informative (sufficiently polymorphic) loci exist,
of which tens of thousands have been genotyped (Weber
and Broman 2001). Second, in humans, the mutation rate
at these markers is estimated to be around 10�3 to 10�4 per
locus per generation (Ellegren 2000), which is orders of
magnitude larger than the genome-wide average nucleotide
mutation rate of around 10�8 per base per generation. The
higher mutation rate means that a much smaller fraction of
the genome needs to be sampled to make inferences with
microsatellite data than with sequence data. Third, micro-
satellites are largely free of ascertainment bias compared
with single nucleotide polymorphisms (SNPs) (Conrad
et al. 2006). The extraordinarily high mutation rate of mi-

crosatellites means that they are primarily discovered not
based on their polymorphism pattern in any one population
(they are essentially guaranteed to be polymorphic) but in-
stead based on their sequence. Thus, the population in
which they are first studied is not expected to substantially
bias inferences based on the data. By contrast, SNP allele
frequency in the population in which it is discovered has
a dramatic influence on the probability that it will be in-
cluded in a study, and thus, SNP data sets are deeply
affected by ascertainment bias (Clark et al. 2005). The ma-
jority of SNPs on human genome-wide scanning arrays
have been ascertained in a complex way that is difficult
to model, confounding the interpretation of allele frequency
distributions for inferences about history.

The technology to efficiently genotype microsatellites—
using polymerase chain reaction followed by length separation
on gel—has sparked an enormous amount of effort on using
them to make inferences about genetic variation. They have
beenextensivelyanalyzed in thecontextofconstructinggenetic
linkage maps in a wide range of species, from humans to zebra
fish to wheat (Dib et al. 1996; Roder et al. 1998; Shimoda et al.
1999). Using linkage maps and family-based linkage analysis,
microsatellites have been used to discover regions of identity
by descent in related individuals, which in turn have been used
to localize the search for disease genes.

Initially, there was great interest in using microsatel-
lites to make inferences about history, not only in humans
but also in other species (Bowcock et al. 1994; Paetkau
et al. 1997). The idea that inferences about history were
possible using these markers was based on preliminary ev-
idence that microsatellites mutate approximately according
to a random walk, whereby alleles undergo length changes
during DNA replication due to polymerase slippage
(Levinson and Gutman 1987; Ellegren 2004). The simplest
model was the single-step symmetric stepwise mutation
model (SMM) (Ohta and Kimura 1973; Valdes et al.
1993), whereby microsatellites mutate to one motif length
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shorter or longer with equal probability. In the generalized
stepwisemutationmodel (GSMM)(KimmelandChakraborty
1996), the length changes can also be multi-step (Di
Rienzo et al. 1994) and involve directional asymmetry
(Amos and Rubinstzein 1996). Assuming that the GSMM
holds, the average square distance (ASD) (Goldstein et al.
1995a) between orthologous microsatellites of two indi-
viduals provides an unbiased estimate of the coalescence
time averaged across the genome, also known as the av-
erage time to the most recent common ancestor (tMRCA)
(Slatkin 1995). The establishment of the microsatellite
molecular clock using the GSMM led researchers to infer
average coalescent times (Goldstein et al. 1995a, 1995b;
Goldstein and Pollock 1997; Zhivotovsky 2001), popula-
tion differentiation (FST for microsatellites) (Slatkin
1995), and patterns of population size expansion and con-
traction (Kimmel et al. 1998; Reich and Goldstein 1998).

Despite the initial excitement in using microsatellites to
make inferences about history, this interest has waned be-
cause experimental evidence has revealed instances where
the GSMM is violated. In the context of boundary constraints
on microsatellite allele lengths, for example, ASD can lose
accuracy for separations beyond 10,000 generations (assum-
ing the range of alleles is constrained to 20 repeats) (Feldman
et al. 1997), which is well within the depth of human genetic
variation. Researchers have also explored more complex
models of microsatellite evolution that include boundary
constraints (Nauta and Weissing 1996; Feldman et al.
1997) and length-dependent mutation rates (Di Rienzo
et al. 1994; Kruglyak et al. 1998; Xu et al. 2000; Sainudiin
et al. 2004), where ASD is also inappropriate. Perhaps the
greatest concern for using microsatellites as molecular
clocks is the concern that each locus would have to be char-
acterized experimentally and individually modeled.

Due to doubts about the ability to accurately model the
microsatellite mutation process, recent studies have es-
chewed the use of microsatellite data to infer parameters
of human history, though there are some important excep-
tions (Ramachandran et al. 2008; Szpiech et al. 2008).
Thus, although large-scale microsatellite data sets have re-
cently been collected in many human populations—in par-
ticular ;700 microsatellite loci were genotyped in
approximately 3,000 individuals from 147 populations, in-
cluding the Human Genome Diversity Panel (HGDP)
(Rosenberg et al. 2002, 2005; Zhivotovsky et al. 2003),
South Asians (Rosenberg et al. 2006), Native Americans
(Wang et al. 2007), Latinos (Wang et al. 2008), and Pacific
Islanders (Friedlaender et al. 2008)—only two of eight
studies (Zhivotovsky et al. 2003; Becquet et al. 2007) at-
tempted to make time inferences with these data. Most stud-
ies have instead focused on using microsatellite data to
detect and analyze population structure.

In this study, we revisit the hypothesis that reliable in-
ferences about history can be obtained using microsatellite
data. To do this, we use newly available genome sequenc-
ing data sets that permit empirical assessments of the micro-
satellite molecular clock. More specifically, we compare
ASD with genomic sequence divergence using data sets
from both humans and chimpanzees and show that, despite
the known presence of deviations from the GSMM at many
individual loci, the averaged microsatellite clock over all

loci applies with remarkable accuracy to time depths that
are about 10-fold greater than previous simulations. Next,
we show that the microsatellite FST is accurate when com-
pared to SNP FST, and we perform coalescent simulations to
show that SNP ascertainment bias is a plausible explanation
for discrepancies between the two FST measures. It is likely
that the microsatellite molecular clock can be useful to the
analysis of population history for many populations and
closely related species, beyond the humans and chimpan-
zees analyzed here.

It is important to note that microsatellite ASD, like se-
quence divergence between two samples (the number of nu-
cleotide differences per base pair), is expected to be
proportional to tMRCA averaged across the genome, and
does not provide any direct information about population
split times. We focus on ASD here because we can directly
plot it against average sequence divergence for population
pairs and test whether the molecular clock holds, without
making any assumptions about demographic history. Only
after having demonstrated that ASD is an accurate molec-
ular clock do we discuss its potential applications in esti-
mating population split times, historical population sizes,
and historical migrations, which are more complicated in-
ferences that can only be done with appropriate population
genetics modeling.

Materials and Methods
Microsatellite Data

For humans, we used 783 autosomal microsatellites
from Rosenberg et al. (2005). From this set, we found that
two loci were almost perfectly correlated and removed the
locus (D2S1334) with more missing data. We used
Rosenberg’s H952 set of individuals, who are expected
to be less related than second cousins (Rosenberg 2006).
To match individuals to the sequence data sets, we pooled
individuals according to population (supplementary table
S1, Supplementary Material online). For chimpanzees,
we used the 292 autosomal microsatellites generated by
Becquet et al. (2007). We only used chimpanzees (supple-
mentary table S1, Supplementary Material online) that have
no population ambiguity based on geographic and genetic
clustering information.

Sequence Data

We used three sequence data sets (table 1): The first
was generated by Keinan et al. (2008), which used whole
genome shotgun sequencing (WGS) (Weber and Myers
1997) to sequence four East Asians (Han Chinese and Jap-
anese), five North European, five West Africans (Yoruba),
and one Biaka Pygmy. The second data set was experimen-
tally generated in our own laboratory using a reduced rep-
resentation shotgun (RRS) library (Altshuler et al. 2000) to
sequence one San, one Australian aborigine, and one Mbuti
Pygmy. This data set has not been previously published.
Unlike WGS, which fragments the genome at random,
RRS produces fragments cut by specific restriction en-
zymes, constraining sequences to specific regions of the ge-
nome (see details of RRS sequencing below). WGS data
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from Yoruba, Europeans, and East Asians from WGS were
aligned to the sequence from the three RRS individuals, al-
lowing for a larger number of pairwise comparisons across
populations than was possible with WGS. The third data set
was generated by Caswell et al. (2008) and consisted of
WGS sequence data from one Bonobo, three Western
Chimpanzees (including ‘‘Clint,’’ the individual used to
generate the chimpanzee reference sequence 2005), three
Central Chimpanzees, and one Eastern Chimpanzee. We
converted divergence values from Caswell et al. into abso-
lute units of substitutions per kilobase (kb) by assuming that
the Western–Western chimpanzee divergence is approxi-
mately equal to WGS European–European divergence (Pat-
terson, Price, and Reich 2006; Patterson, Richter, et al.
2006).

RRS Sequencing

We used restriction enzymes PmeI (5#-GTTT AAAC-
3#) and EcoRI (5#-G AATTC-3#) to fully digest DNA
extracted from cell lines of five diverse human DNA sam-
ples, using an RRS protocol similar to that described in
Altshuler et al. (2000). We ran the products of the two re-
striction enzyme digests on a gel and cut out a 2–3-kb band,
which is expected to isolate to the same subset of the ge-
nome in each of the samples. Finally, we cloned the frag-

ments into a pUC19 vector flanked by a PmeI overhang on
one side and an EcoRI overhang on the other.

We calculated that the same ;30 Mb, or ;1% of the
genome, would be isolated in the five samples by this ex-
perimental protocol. Given the human genome GC content
of 41%, PmeI sites are expected to occur every 36 kb
(0.205�2 � 0.295�6) for a total of ;86,000 fragments,
and EcoRI are expected to occur every 3.1 kb (0.205�2

� 0.295�4), for a total of ;1,000,000 fragments. Given
the human genome size of 3.1 Gb, and assuming a Poisson
distribution of restriction sites flanked by PmeI and
EcoRI, approximately 2 � 86,000 � (1,000,000–
86,000)/(1,000,000) 5 157,000 such fragments are ex-
pected in the genome. Of these, we carried out an integral
to infer that the proportion of these fragments that are ex-
pected to be in the 2–3-kb range is ;15%, which translates
to an expectation of ;23,000 fragments of 2–3 kb for
sequencing in each sample. Because each fragment we an-
alyzed was sequenced from both ends with an expected
500–800 bp per read, the total amount of sequence that
we expected in our ‘‘reduced representation’’ of the genome
was about 23,000 � 1.3 kb 5 30 Mb. The advantage of
RRS over WGS is that with deterministic fragmentation
of the genome, the sequences that we obtained in distinct
individuals were expected to overlap with greatly increased
probability, so that we required substantially less sequenc-
ing to obtain genome overlaps from different samples.

Table 1
Gold-Standard Sequence Divergences

Yoruba European East Asian Biaka Pygmy

Human WGS data set
Yoruba 1.081 1.106 1.098 1.190 Divergence (sites per kb)

0.005 0.004 0.004 0.024 Standard error of divergence
641.7 1117.0 814.7 18.5 Number of pairwise aligned bases (Mb)

European 0.827 0.892 1.212
0.004 0.004 0.025

657.2 848.2 22.6
East Asian 0.772 1.186

0.005 0.027
296.8 18.1

Yoruba European East Asian Australian Mbuti Pygmy San

Human RRS data set
Yoruba 1.017 1.056 1.050 1.047 1.108 1.113

0.023 0.014 0.019 0.024 0.021 0.020
4.1 11.1 5.3 3.0 4.5 4.5

European 0.798 0.850 0.873 1.082 1.096
0.015 0.016 0.021 0.018 0.019
7.1 7.0 3.8 5.8 5.7

East Asian 0.788 0.817 1.111 1.137
0.034 0.026 0.025 0.027
1.3 1.9 2.9 2.9

Central Eastern Western

Chimpanzee WGS data set
Central 2.072 2.023 2.254

0.032 0.069 0.019
5.0 1.0 13.7

Western 2.185 0.827
0.069 0.012
1.0 13.7

Bonobo 3.875
0.126
0.6
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We carried out RRS sequencing on two San male sam-
ples from HGDP (HGDP_988 and HGDP_991), two Mbuti
Pygmy females from the Coriell Cell Repositories
(NA10493 and NA10496), and one Australian Aborigine
female from the European Collection of Cell Cultures (EC-
CAC_9118). We attempted to sequence 15,360 reads
(7,680 paired ends) from each sample, and then aligned
the reads to the reference human genome sequence, NCBI
Build 35, using ssahaSNP (Ning et al. 2001) with stringent
NQS parameters of Qsnp.5 40, Qflank.5 15, Nflank 5
5, maxFlankDiff 5 1, and maxSNPs/kb , 15. Reads that
map to multiple places in the genome with nearly identical
scores are removed from further analysis. After alignment
and filtering, we had data from 11,687 reads in HGDP_998
(5,656,804 bp meeting neighborhood quality score thresh-
olds), 11,500 reads in HGDP_991 (5,359,356 bp), 11,848
reads in NA10493 (5,702,532 bp), 11,905 reads in
NA10496 (5,486,017 bp), and 12,193 reads in
ECCAC_9118 (6,034,676 bp).

We note that in this study we do not examine overlaps of
RRS libraries, even though such comparisons were the orig-
inal intent of the RRS data collection strategy. This isbecause
we found that if the same section of the genome passes
through the RRS process in two or more chromosomes, they
are in practice biased to be too closely related to each other in
time (the inferred tMRCA was systematically lower than the
value obtained based on microsatellite ASD). We hypothe-
size that this reflects the fact that to enable a comparison be-
tween two RRS libraries, two haplotypes must be identical at
both the PmeI (8 bp) and EcoR1 (6 bp) restriction cut sites,
which requires identity for each of the 14 5 8 þ 6 bases. By
requiring that pairs of haplotypes match for each of the 14
bases, we are biasing the haplotypes that we analyze to be
ones with fewer mutations separating them, and thus to be
more closely related to each other (in time) than the average
pair of sequences in the genome. It is straightforward to show
that this generates an appreciable (if small) downward bias in
the divergence time estimate, which we in fact observed.

SNP Data

We used the HGDP autosomal 650K SNPs (Li et al.
2008).

Computation of Genetic Distances for Microsatellites
and Sequences

For microsatellites, we computed the unbiased sample
statistic of ASD, which is theoretically proportional to
tMRCA assuming that the GSMM is valid (Goldstein
et al. 1995a). It is important to realize that the average
tMRCA across the genome can be estimated directly from
genetic data (using either microsatellite ASD or per base
pair sequence divergence). It is a property of the samples
that are being analyzed and can be estimated empirically
without making any assumptions about the demographic
history of populations.

For a single locus, ASD works as follows: Suppose we
have population A with nA individuals (2nA alleles) and
population B with nB individuals (2nB alleles). We take

an allele from each population, perform a subtraction,
and square the result. Then, the single locus ASD is the av-
erage of all allele pairs defined as follows:

ASD5
1

2nA � 2nB

X2nA

i5 1

X2nB

j5 1

ðAi � BjÞ2

It can be shown (see below) that ASD is very similar to the
total variance of all samples between two populations. Fur-
thermore, the within-population ASD (not explicitly shown)
is equal to twice the variance of the sampled population.

Next, we averaged ASD over multiple loci. We as-
sumed that the microsatellite loci are independent because
they were selected for the purpose of linkage analysis to
be distantly spaced across the genome. Thus, the standard
error is simply the standard deviation of ASD across all loci
divided by the square root of the number of loci. We did not
correct for mutation rate heterogeneities across loci, because
their empirical values were unknown. More importantly, we
did not normalize across loci to equalize the tMRCA of each
locus, because biologically, tMRCA are different for each lo-
cus due to different gene genealogies (Rosenberg 2002).

To compute genetic distances for pairwise aligned se-
quences, we simply counted nucleotide differences to ob-
tain sequence divergences. Assuming that the molecular
clock hypothesis is true for sequence divergence (i.e. the
genome-average nucleotide substitution rate is constant
since human–chimpanzee speciation), then sequence diver-
gence is strictly proportional to tMRCA. Because of linkage
disequilibrium, nearby divergent sites are dependent, and
standard errors of sequence divergence were computed
via a block jackknife approach (Keinan et al. 2007).

Computation of FST for Microsatellites and SNPs

Although there are multiple methods to compute FST,
our goal is to have an unbiased FST statistic for microsatel-
lites that is also coherent with SNP FST. FST is defined as

FST 5 1 � HS

HT

:

HS is the average heterozygosity across all populations. HT

is the heterozygosity of all populations pooled together.
Slatkin (1995) showed that in the context of the GSMM,
heterozygosity is simply the variance of the allelic distribu-
tion at a particular locus. However, we do not use his sam-
ple statistic verbatim because he requires equal sample
sizes, and instead use one that we derived that allows for
unequal sample sizes.

A Pairwise FST Estimator at a Single Microsatellite
Locus

Suppose we have two populations, each with allelic
distributions described by random variables A and B. HS

is trivial:

HS 5
1

2
varðAÞ þ 1

2
varðBÞ:
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HT is found using the law of total variance, yielding

HT 5
1

2
varðAÞ þ 1

2
varðBÞ þ 1

4
ðE½A� � E½B�Þ2:

Combining terms, we have an FST estimator:

FST 5 1 � HS

HT

5
ðE½A� � E½B�Þ2

2varðAÞ þ 2varðBÞ þ ðE½A� � E½B�Þ2
:

Coherence with SNP FST

SNP loci are biallelic, and hence, random variables A
and B are Bernoulli distributed with minor allele frequency
(MAF) parameters pA and pB. SNP FST becomes

SNP FST 5
ðpA � pBÞ2

2pAð1 � pAÞ þ 2pBð1 � pBÞ þ ðpA � pBÞ2

5
d2

Pð1 � PÞ :

This is a classical definition for SNP FST, where P is
the MAF of the two populations combined, and d is the dif-
ference between the MAF of a population and P:

pA 5P þ d;

pB 5P � d:

Hence, SNP FST is just a special case of microsatellite FST.

Unbiased Sample Statistic for FST

We compute unbiased sample statistics (which we re-
fer to using a ‘‘hat’’ notation) separately for the numerator
and denominator, then calculated the ratio.

cFST 5
N̂

D̂
:

Given sample sizes and unbiased sample statistics for
mean and variance, the numerator becomes:

N̂5 ðclA �clBÞ2 �
dvarðAÞ
nA

�
dvarðBÞ
nB

:

Similarly, the denominator becomes

D̂5 2 dvarðAÞ þ d2varðBÞ þ N̂:

Multiple Loci

All discussion so far has been for a single microsatel-
lite locus. For K loci, we first compute K unbiased sample
statistics, each for the numerator and denominator. Then we
separately average the numerator and denominator and
finally compute the ratio. This strategy avoids numerical
instability issues of averaging ratios (namely, when denom-

inators are small at certain loci).

cFST 5

P
i
bNiP

i
bDi

:

Standard error across loci is computed via the jackknife
method (Efron and Gong 1983). SNP FST quantities and
standard errors were computed using EIGENSOFT (Patter-
son, Price, and Reich 2006).

Relating FST and ASD in Microsatellites

FST and ASD are closely related. From the above, it is
clear that FST is a function of first- and second-order mo-
ments of allelic distributions. Furthermore, it is known
(Goldstein et al. 1995a) that the ASD estimator is

ASD5 varðAÞ þ varðBÞ þ ðE½A� � E½B�Þ2:

Define X as the sum of intrapopulation variances. Define Y
as interpopulation variance.

X 5 varðAÞ þ varðBÞ;

Y 5 ðE½A� � E½B�Þ2;

ASD5X þ Y;

FST 5
Y

2X þ Y
:

Now the relationship between FST and ASD is clear.
ASD closely resembles the total variance of allelic distribu-
tions of populations A and B combined. FST is the ratio of
interpopulation variance to total variance.

Results
Microsatellite ASD and Sequence Divergence Are
Linearly Related

To test empirically whether the microsatellite ASD
statistic (Goldstein et al. 1995a) can be an unbiased estimate
of tMRCA, we used genomic sequence divergence as a ‘‘gold
standard,’’ and assessed how closely the microsatellite in-
ferences matched this number. We restricted our analysis to
pairs of populations for which we had both extensive ge-
nome sequence alignments and large-scale microsatellite
data. We first used sequence data sets to compute autosomal
sequence divergence, which was assumed to be propor-
tional to the average tMRCA. This formed our gold-standard
molecular clock. For the same pairs of populations, we then
computed ASD using microsatellite data. Comparing se-
quence divergence to ASD provided a metric for the accu-
racy of the microsatellite molecular clock, assessed in terms
of linearity (correlation coefficient) and standard errors.

FIgure 1 plots sequence divergence against microsa-
tellite ASD. For WGS humans (Panel A), the correlation
coefficient is r 5 0.989 (P 5 4.9e�7, 95% confidence in-
terval [CI] 0.946–0.998). For RRS humans (Panel B),
r 5 0.983 (P 5 5.3e�11, 95% CI 0.949–0.995). For
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chimpanzees (Panel C), r 5 0.986 (P 5 2.7e�4, 95% CI
0.877–0.999). Figure 1 suggests the following:

� Sequence divergence and microsatellite ASD are
linearly related: The regressions have correlation coef-
ficients all greater than 0.97. Because sequence divergence
is known to be proportional to tMRCA, microsatellite ASD is
linear to tMRCA. Interestingly, however, the regression lines
do not intersect the origin, a point we return to below.

� Combining microsatellite loci yields a reasonably pre-
cise molecular clock and in principle supports precise
inferences about history. Examining the standard errors
in figure 1A, the 783 human microsatellite loci are
approximately 2.5 times less precise than that of Biaka
Pygmy sequence alignments. Thus, 783 microsatellite
loci correspond to about 7.2 Mb of alignment of two
WGS sequences (table 1). In turn, one microsatellite is
‘‘worth’’ approximately 10 kb of shotgun sequencing,
which is expected to contain 10-nt mutations between
two modern humans.

� The microsatellite molecular clock appears to be linear
for at least 2 My: It has been shown theoretically that in
the presence of severe range constraints, microsatellite
ASD should lose its linear behavior after about 10,000
generations (Feldman et al. 1997), which is 250,000 years
assuming 25 years per generation. Bonobos are a distinct
species from chimpanzees, and are thought to have tMRCA

of around 2.2 My (Caswell et al. 2008) averaged across
the genome, yet the linearity in figure 1C still applies to
bonobo–chimpanzee divergence. Therefore, encourag-
ingly, the duration of ASD linearity is at least 10 times
that of theoretical predictions, suggesting range
constraints are not as severe as previously imagined.

Nonzero y-Intercept in figure 1

Although these results demonstrate microsatellites’
usefulness in estimating tMRCA, there is a nonzero y-intercept

(supplementary fig. S1, Supplementary Material online),
oddly suggesting that zero sequence divergence (tMRCA

5 0) is associated with a positive ASD. We used simu-
lations to investigate the possibility that microsatellite
genotyping error caused the elevated ASD relative to
its true value. Assuming a typical genotype error rate
of 1% with error being randomly distributed at ±1 repeat
length (Weber and Broman 2001), we can only explain
10% of the offset. It is possible, however, that the most
pertinent error in microsatellite genotyping is not miscall-
ing microsatellite lengths by a single repeat length, but
instead, miscalling heterozygous genotypes as homozy-
gous, which can easily occur with microsatellites (Weber
and Broman 2001). Missing of heterozygotes would have
the effect of generating false multi-step mutations, which
would result in a much larger inflation in the ASD (due to
the squaring of the difference in allele lengths) and could
plausibly explain our significantly nonzero y-intercept. Al-
ternatively, the relationship between ASD and tMRCA

could be globally nonlinear but easily linearizable in
our time window. Whatever the cause for our observa-
tions, these results indicate that for population genetic
analysis, it is important to use a calibration curve (such
as fig. 1) to convert ASD to sequence divergence, correct-
ing for the inflated estimate of divergence time from mi-
crosatellite ASD.

The Microsatellite Clock Reveals Deep Lineages of
Human Genetic Variation

The microsatellite data show that the San, Biaka
Pygmy, and Mbuti Pygmy Africans are more diverged in
their pairwise tMRCA from non-African populations than
are Yoruba West Africans. These results are consistent with
an analysis of microsatellite data by Zhivotovsky et al.
(2003) but strengthen their result because microsatellite
and sequence divergence concur (fig. 1A and B). It was al-
ready known based on mitochondrial DNA and Y

FIG. 1.—Microsatellite ASD is linear with sequence divergence. Horizontal axes are sequence divergences measured in substitutions per kb, which
we assume is an accurate gold standard. Vertical axes are microsatellite ASD values. Crosshairs are data with standard errors for each population pair.
The linear regression line is shown. For WGS humans (A), the correlation coefficient is r 5 0.989 (P 5 4.9e�7, 95% CI 0.946–0.998). In the left box
are Yoruba versus (top to bottom): European, East Asian, and Yoruba. In the right box are Biaka Pygmy versus (top to bottom): European, Yoruba, and
East Asian. For RRS humans (B), r 5 0.983 (P 5 5.3e�11, 95% CI 0.949–0.995). In the left box are Yoruba versus (top to bottom): European,
Australian Aborigine, East Asian, and Yoruba. In the right box is Biaka Pygmy versus: European, Yoruba, and East Asian; also are San versus: Yoruba,
European, and East Asian. For chimpanzees (C), r 5 0.986 (P 5 2.7e�4, 95% CI 0.877–0.999).

1022 Sun et al.



chromosome data that the San and Mbuti contain deeply
diverged lineages, but our results and those of Zhivotovsky
et al. using autosomal microsatellite data show definitively
that these populations are outgroups to all other popula-
tions.

Inferred Pairwise Sequence Divergence of HGDP
Populations

An immediate application of the regressions from figure
1 is to infer sequence divergences for the remaining HGDP
populations in which we lack sequence data. Figure 2 is a ma-
trix plot showing the inferred divergences (hence inferred
tMRCA). In this plot, the San and Pygmy Africans are the only
populations equidistant to all other populations, further sug-
gesting that these populations are the most deeply diverged.

Microsatellite FST Accurately Estimates Allele
Frequency Differentiation

FST measures the degree of differentiation between
populations. Given genetic diversity data for two popula-
tions, FST (a quantity between 0 and 1) is the ratio of in-

terpopulation variance to total variance. When FST is
appropriately transformed (Slatkin 1991; Patterson unpub-
lished), one can infer the genetic drift that occurred between
two populations since they split. In particular, one can es-
timate the population split time (tpop) in units of 2N, where
N is the effective population size, under the assumption that
populations have been constant in size since their diver-
gence. We note that in human populations, tpop and tMRCA

are different by an order of magnitude: For Africans versus
non-Africans, the average tMRCA is thought to be ;500,000
years ago, whereas tpop is thought to be 40,000–80,000
years ago (Keinan et al. 2008). As we have shown that
the microsatellite molecular clock works for time depths
of at least 2 My, we can be confident that it also works
for time separations that are an order of magnitude less.

FST is usually estimated based on SNP and sequencing
data when available, because uncertainties of the complex
microsatellite mutation process confound the interpretation
of a microsatellite FST in terms of history. Assuming the
GSMM of microsatellite evolution, however, Slatkin de-
rived a microsatellite-based FST estimator (Slatkin called
it RST) (Slatkin 1995) that should be identical to SNP-based
FST. The empirical analyses using Slatkin’s estimator have
been encouraging. For example, based on ,300 SNPs

FIG. 2.—Inferred pairwise sequence divergences of HGDP populations. Microsatellite ASD for each pair of populations in HGDP is computed.
Then using regression from figure 1A, we inferred the divergence of each population pair in substitutions per kb. The grayscale intensities display the
range of divergences. As shown, San and Pygmy Africans are equidistant from all other populations, suggesting that they have the largest tMRCA to any
other human population.
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(Fischer et al. 2006) and ,300 microsatellites in four
chimpanzee populations, Becquet et al. (2007) showed that
the SNP FST and microsatellite FST were concordant.

As of today, the richest data sets with both genome-
wide SNPs and large numbers of microsatellites are those
from HGDP (Rosenberg et al. 2002; Li et al. 2008). We
computed and compared FST based on SNPs and microsa-
tellites in these samples. An important distinction between
the comparison we present here and that of the previous
section (where we examined ASD) is that we do not assume
SNP-based FST as gold standard.

Empirical Relationship between Microsatellite and
SNP FST

Figure 3A plots SNP FST on the horizontal axis and
microsatellite FST on the vertical axis. There are 53 popu-
lations in HGDP and hence 1,378 data points (53 choose 2)
with standard errors. The linearity is clear and the regres-
sion lines intersect the origin. However, there are two dis-
tinct lines for FST . 0.1. The 1,035 pairwise comparisons
of non-Africans populations (46 choose 2) have a regression
line slope of 0.91 and correlation coefficient r 5 0.983
(95% CI 0.982–0.986). The African versus non-African
comparisons have a distinctly smaller slope of 0.73 and
r 5 0.969 (95% CI 0.962–0.975). It is evident that for
FST . 0.1, SNP-based quantities are larger than microsa-
tellite quantities when Africans are involved. We next in-
vestigate the possible reasons for this discrepancy.

SNP Ascertainment Bias Can Explain the Discrepancy
between the Two FST Measurements

To investigate whether SNP ascertainment bias can
explain the phenomena in figure 3A, we simulated SNP
ascertainment as follows:

1. Demographic model 1 (supplementary fig. S2A,
Supplementary Material online): The goal of this model
is to generate a wide range of FST values, larger than
that of real human populations. As shown in supple-
mentary figure S2A, Supplementary Material online, the
size of population A is fixed at N0510,000. The size of
population B varies from 0.01N0 to N0, enabling an
FST(A,B) range of 0.01–0.45. tAB, the population
separation time, is fixed at 400 generations.

2. Coalescent simulation and mutation generation: Given
demographic model 1, we used Hudson’s ms coalescent
simulator (Hudson 2002) to generate trees and mutations
assuming the infinite-sites model. Microsatellite alleles
were then generated according to the SMM. Thus, each
mutation is added or subtracted, at random, to the
microsatellite lengths.

3. Ascertaining SNPs: To generate ascertainment bias-free
SNPs, we recorded the derived allele frequency of each
population across all loci. To generate SNPs affected by
ascertainment bias, for each locus, we took two samples
and examined the allele. If and only if they are different,
we recorded the data from the locus, excluding the two
used for ascertaining. We ascertain in three ways: 1)
two samples from population A, 2) two samples from
population B, and 3) one sample from each population.

4. FST calculation: With the data sets generated from
simulated microsatellites and SNPs, we calculated FST.
We examined if any of the three ascertainment schemes
could generate the same directionality of bias as such in
figure 3A.

5. Enhanced demographic model (supplementary fig. S2B,
Supplementary Material online): The goals of this model
are to more closely mimic real human history, and to apply
the appropriate ascertainment scheme to all populations
simultaneously and observe if ascertainment can cause the
bias in figure 3A. As shown in supplementary figure S2B,

FIG. 3.—Microsatellite and SNP FST are almost equivalent, with the discrepancy likely due to SNP ascertainment. Horizontal axes are the SNP
FST. Vertical axes are the microsatellite FST. In Panel A are FST computed from real HGDP data. There are (53 choose 2) 5 1,378 pairwise population
comparisons (data points). Circles and plus signs are data for each population pair. The linearity is clear, and the regression lines (not shown) intersect
the origin. However, there are two distinct slopes for FST . 0.1. In circles are 1,035 (46 non-African populations, choose 2) non-Africans versus non-
Africans, with regression line slope 5 0.91 and correlation coefficient 0.983 (P , 1e�10, 95% CI 0.982–0.986). In plus signs are Africans versus all
populations, with regression line slope 5 0.73 and correlation coefficient 0.969 (P , 1e�10, 95% CI 0.962–0.975). In Panel B are simulated data
(demographic model in supplementary fig. S2A, Supplementary Material online) with different SNP ascertainment schemes: No ascertainment in
circles, ascertaining using two samples from population A (‘‘African’’) in dots, ascertaining using two samples from population B (‘‘European’’) in
crosses, and ascertaining using one sample from each population in plus signs. In Panel C are simulated data (demographic model in supplementary fig.
S2B, Supplementary Material online) of four populations resembling Africans, Europeans, East Asians, and Native Americans. We used the European-
African ascertainment scheme (see text). In circles are non-Africans versus non-Africans. In plus signs are Africans versus non-Africans. For panels B
and C, enough loci were simulated such that standard errors are of negligible magnitude.
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Supplementary Material online, populations A, B, C, D are
approximately Africans, Europeans, East Asians, and
Native Americans, respectively. We used the same
ascertainment scheme as above and estimated FST.

Simulations Can Replicate the Effect of Ascertainment
Bias on SNPs

For demographic model 1, we denoted population A
(the one with the larger effective population size) as ‘‘Afri-
cans’’ and population B as ‘‘non-Africans.’’ The simulation
results are shown in figure 3B. Without ascertainment, both
FST are identical. Ascertainment using two Africans
showed negligible bias. Ascertainment using two non-
Africans negatively biased SNP FST. Ascertainment using
one sample from each population positively biased SNP
FST. Compared with the real HGDP data (fig. 3A), ascer-
taining from one African and one non-African generated
the same directional effect. This result is reasonable, be-
cause SNPs on medical genetics arrays were discovered
as differences between a non-African chromosome and
the reference human genome. The reference human genome
sequence has a substantial amount of African ancestry be-
cause RPCI-11, the Bacterial Artificial Chromosome li-
brary that has contributed ;74% of the human genome
reference sequence (International Human Genome Se-
quencing Consortium 2001), is likely to be derived from
an African American (Reich et al. 2009).

We applied the one African one non-African ascertain-
ment scheme to demographic model 2. There are four pop-
ulations in the model, producing six FST values in total (four
choose two). As shown in figure 3C, the non-African versus
non-African comparisons show little bias. The African ver-
sus non-African comparisons show a positively biased SNP
FST. Thus, we have demonstrated that SNP ascertainment
bias can generate the discrepancy in figure 3A.

A Unifying View of ASD and Microsatellite FST

Having established the accuracy of both microsatellite
ASD and FST, we next show a 2D view of HGDP micro-
satellite data that highlights important historical events.

Just as sequence variation data contains information on
both divergence time and genetic drift, it can be shown (Ma-
terials and Methods) that microsatellite ASD and FST are
functions of two independent quantities: interpopulation var-
iance and intrapopulation variance. Using the HGDP micro-
satellite data as previously described, in figure 4 we projected
the data onto the two orthogonal statistics: interpopulation
variance (horizontal axis) and intrapopulation variance (ver-
tical axis). Again we have 1,378 data points, and lines of
constant ASD and FST are marked. Above the thick black
line are Africans versus all populations, and below are
non-Africans versus non-Africans. This figure suggests
the following:

� With the exception of Native American to Native
American comparisons, lines of constant ASD have
slopes similar to slopes of the data points. African
populations are equidistant from non-Africans. This is
expected from the ‘‘out-of-Africa’’ migration hypothesis

in which all non-African populations form a clade
(Cavalli-Sforza and Feldman 2003).

� Projecting onto lines of constant ASD, we see a clear gap
(thick black line) between Africans and non-Africans.
This confirms that there is a time difference between the
out-of-Africa event and the rest of migration events.
There is a second gap for the Native Americans,
confirming that migration into America is a significantly
more recent event (Cavalli-Sforza and Feldman 2003).

� Examining Africans versus all populations, FST projec-
tions show the drift out of Africa: The top left rectangle
shows Africans versus Africans, followed by Europeans
and Asians, then Pacific Islanders, and finally Native
Americans (the rectangle crossing the largest FST

values). The series of events is in agreement with
progressive bottleneck events leading out of Africa
(Ramachandran et al. 2005).

Discussion

The fact that microsatellites are useful as molecular
clocks has immediate applications: First, as described
above (and in supplementary fig. S3, Supplementary Ma-
terial online), we were able to use the clocklike nature of
microsatellites to provide clear evidence that the San, Bia-
ka, and Mbuti Pygmy branch off near the root of the tree of
human populations, with all other populations (including
West Africans) forming a clade. Note that all of our anal-
yses are restricted to population average coalescent time,
a quantity distinctly different and much more ancient than
population split time. Second, we can use microsatellite

FIG. 4.—A unifying view of ASD and microsatellite FST. The
horizontal axis is interpopulation variance. The vertical axis is intra-
population variance. Afr 5 Africans, NA 5 Native Americans, PI 5
Pacific Islanders, EA 5 East Asians, EMC 5 Europeans, Middle
Easterners, and Central South Asians. It is shown (Materials and
Methods) that microsatellite FST and ASD are functions of these two
variances. Lines of constant ASD are dashed lines with negative slope.
Lines of constant FST are dashed lines with positive slope. The data are
(53 choose 2) 5 1,378 pairwise HGDP population comparisons. Clearly,
this picture segregates populations into distinguishable clusters. Africans
versus all are above the thick black line. Non-Africans versus non-
Africans are below the line. Distinguishable clusters are demarcated in
ovals and squares.
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data to correct inferences about FST based on high density
SNP array data. SNP FST values can be precise, but they are
affected by ascertainment bias. Potentially, we can use mi-
crosatellite FST to correct most of this bias. For example,
based on figure 3, we estimate that all pairwise autosomal
FST’s between African and non-African populations in the
Li et al. HGDP data (Li et al. 2008) are too large by a factor
of 1.25 for FST values .0.1. By deflating all these FST val-
ues by this factor, we can obtain a pairwise FST matrix that
is likely to be more accurate.

We finally note that our results are intriguing because
in principle, they offer a way to obtain a direct estimate of
the human per nucleotide mutation rate for sequence diver-
gence data. To date, it has been impossible to obtain a direct
estimate of the human per base pair mutation rate because
the rate is too low (about 2 � 10�8 per nucleotide per gen-
eration) to permit direct observation from pedigree data.
However, the microsatellite mutation rate is sufficiently
high (10�3 to 10�4 per generation) that novel mutations
are frequently directly observed in families (Weber and
Wong 1993). By directly estimating the microsatellite mu-
tation rate and mutation process in families, and then ex-
trapolating to sequence divergence, we should be able to
estimate the human per base pair mutation rate and infer
the dates of important historical events, like the divergence
times of human and chimpanzees, without using fossil re-
cords for calibration.

Supplementary Material

Supplementary figures S1–S3 and table S1 are avail-
able at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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